
Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 1

Software Testing and Quality Assurance
Theory and Practice

Chapter 3
Unit Testing

Presenter
Presentation Notes

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 2

Outline of the Chapter

• Concept of Unit Testing
• Static Unit Testing
• Defect Prevention
• Dynamic Unit Testing
• Mutation Testing
• Debugging
• Unit Testing in eXtreme Programming
• Tools For Unit Testing

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 3

Concept of Unit Testing

• Static Unit Testing
– Code is examined over all possible behaviors that might arise during run time
– Code of each unit is validated against requirements of the unit by reviewing

the code

• Dynamic Unit Testing
– A program unit is actually executed and its outcomes are observed
– One observe some representative program behavior, and reach conclusion

about the quality of the system

• Static unit testing is not an alternative to dynamic unit testing
• Static and Dynamic analysis are complementary in nature
• In practice, partial dynamic unit testing is performed concurrently

with static unit testing
• It is recommended that static unit testing be performed prior to the

dynamic unit testing

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 4

Static Unit Testing

• In static unit testing code is reviewed by applying techniques:
– Inspection: It is a step by step peer group review of a work product, with each

step checked against pre-determined criteria
– Walkthrough: It is review where the author leads the team through a manual

or simulated executed of the product using pre-defined scenarios

• The idea here is to examine source code in detail in a systematic
manner

• The objective of code review is to review the code, and not to
evaluate the author of the code

• Code review must be planned and managed in a professional manner
• The key to the success of code is to divide and conquer

– An examiner inspect small parts of the unit in isolation
• nothing is overlooked
• the correctness of all examined parts of the module implies the correctness

of the whole module

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 5

Static Unit Testing (Code Review)
• Step 1: Readiness

– Criteria
• Completeness
• Minimal functionality
• Readability
• Complexity
• Requirements and design

 documents
– Roles

• Moderator
• Author
• Presenter
• Record keeper
• Reviewers
• Observer

• Step 2: Preparation
– List of questions
– Potential Change Request (CR)
– Suggested improvement opportunities Figure 3.1: Steps in the code review process

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 6

Static Unit Testing (Code Review)
• Step 3: Examination

– The author makes a presentation
– The presenter reads the code
– The record keeper documents the CR
– Moderator ensures the review is on

track
• Step 4: Re-work

– Make the list of all the CRs
– Make a list of improvements
– Record the minutes meeting
– Author works on the CRs to fix the

issue
• Step 5: Validation

– CRs are independently validated
• Step 6: Exit

– A summary report of the meeting
minutes is distributes

A Change Request (CR) includes the
following details:

– Give a brief description of the issue
– Assign a priority level (major or

minor) to a CR
– Assign a person to follow it up
– Set a deadline for addressing a CR

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 7

Static Unit Testing (Code Review)

• The number of lines of code (LOC) reviewed per hour
• The number of CRs generated per thousand lines of code (KLOC)
• The number of CRs generated per hour
• The total number of hours spend on code review process

The following metrics can be collected from a code review:

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 8

Static Unit Testing (Code Review)
• The code review methodology can be applicable to review other documents
• Five different types of system documents are generated by engineering department

– Requirement
– Functional Specification
– High-level Design
– Low-level Design
– code

• In addition installation, user, and trouble shooting guides are developed by
technical documentation group

Table 3.1: System documents

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 9

Defect Prevention

• Build instrumentation code into the code
• Use standard control to detect possible occurrences of error

conditions
• Ensure that code exists for all return values
• Ensure that counter data fields and buffer overflow/underflow are

appropriately handled
• Provide error messages and help texts from a common source
• Validate input data
• Use assertions to detect impossible conditions
• Leave assertions in the code.
• Fully document the assertions that appears to be unclear
• After every major computation reverse-compute the input(s) from the

results in the code itself
• Include a loop counter within each loop

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 10

Dynamic Unit Testing
• The environment of a unit is emulated and tested in isolation
• The caller unit is known as test driver

– A test driver is a program that invokes the unit under test (UUT)
– It provides input data to unit under test and report the test result

• The emulation of the units called by the UUT are called stubs
– It is a dummy program

• The test driver and the stubs are together called scaffolding
• The low-level design document provides guidance for selection of input test data

Figure 3.2: Dynamic unit test environment

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 11

Dynamic Unit Testing

• Control flow testing
– Draw a control flow graph (CFG) from a program unit
– Select a few control flow testing criteria
– Identify a path in the CFG to satisfy the selection criteria
– Derive the path predicate expression from the selection paths
– By solving the path predicate expression for a path, one can generate the data

• Data flow testing
– Draw a data flow graph (DFG) from a program unit and then follow the

procedure described in control flow testing.

• Domain testing
– Domain errors are defined and then test data are selected to catch those faults

• Functional program testing
– Input/output domains are defined to compute the input values that will cause

the unit to produce expected output values

Selection of test data is broadly based on the following techniques:

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 12

Mutation Testing

• Modify a program by introducing a single small change to the code
• A modified program is called mutant
• A mutant is said to be killed when the execution of test case cause it

to fail. The mutant is considered to be dead
• A mutant is an equivalent tot the given program if it always produce

the same output as the original program
• A mutant is called killable or stubborn, if the existing set of test

cases is insufficient to kill it
• A mutation score for a set of test cases is the percentage of non-

equivalent mutants killed by the test suite
• The test suite is said to be mutation-adequate if its mutation score is

100%

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 13

Mutation testing
Consider the following program P
• main(argc,argv)
• int argc, r, i;
• char *argv[];
• { r = 1;
• for i = 2 to 3 do
• if (atoi(argv[i]) > atoi(argv[r])) r = i;
• printf(“Value of the rank is %d \n”, r);
• exit(0); }

• Test Case 1:
 input: 1 2 3
 output: Value of the rank is 3
• Test Case 2:
 input: 1 2 1
 output: Values of the rank is 2
• Test Case 3:
 input: 3 1 2
 output: Value of the rank is 1
 Mutant 1: Change line 5 to for i = 1 to 3 do

Mutant 2: Change line 6 to if (i > atoi(argv[r])) r = i;
Mutant 3: Change line 6 to if (atoi(argv[i]) >= atoi(argv[r])) r = i;
Mutant 4: Change line 6 to if (atoi(argv[r]) > atoi(argv[r])) r = i;
Execute modified programs against the test suite, you will get the results:
Mutants 1 & 3: Programs will pass the test suite, i.e., mutants 1 & 3 are not killable
Mutant 2: Program will fail test cases 2
Mutant 1: Program will fail test case 1 and test cases 2
Mutation score is 50%, assuming mutants 1 & 3 non-equivalent

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 14

Mutation testing
• The score is found to be low because we assumed mutants 1 & 3 are nonequivalent
• We need to show that mutants 1 and 3 are equivalent mutants or those are killable
• To show that those are killable, we need to add new test cases to kill these two

mutants
• First, let us analyze mutant 1 in order to derive a “killer” test. The difference

between P and mutant 1 is the starting point
• Mutant 1 starts with i = 1, whereas P starts with i = 2. There is no impact on the

result r. Therefore, we conclude that mutant 1 is an equivalent mutant
• Second, if we add a fourth test case as follows:
 Test Case 4:
 input: 2 2 1
• Program P will produce the output “Value of the rank is 1” and mutant 3 will

produce the output “Value of the rank is 2”
• Thus, this test data kills mutant 3, which give us a mutation score 100%

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 15

Mutation Testing

Mutation testing makes two major assumptions:

• Competent Programmer hypothesis

– Programmers are generally competent and they do not create random programs

• Coupling effects
– Complex faults are coupled to simple faults in such a way that a test suite

detecting simple faults in a program will detect most of the complex faults

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 16

Debugging

• The process of determining the cause of a failure is known as
debugging

• It is a time consuming and error-prone process
• Debugging involves a combination of systematic evaluation,

intuition and a little bit of luck
• The purpose is to isolate and determine its specific cause, given a

symptom of a problem
• There are three approaches to debugging

– Brute force
– Cause elimination

• Induction
• Deduction

– Backtracking

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 17

Unit Testing in eXtreme Programming

1. Pick a requirement, i.e., a story
2. Write a test case that will verify a small part

of the story and assign a fail verdict to it
3. Write the code that implement particular

part of the story to pass the test
4. Execute all test
5. Rework on the code, and test the code until

all tests pass
6. Repeat step 2 to step 5 until the story is

fully implemented

Figure 3.3: Test-first process in XP

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 18

Unit Testing in eXtreme Programming

Three laws of Test Driven development (TDD)
• One may not write production code unless the first failing unit test is

written
• One may not write more of a unit test than is sufficient to fail
• One may not write more production code than is sufficient to make

the failing unit test pass

Pair programming:

– In XP code is being developed by two programmers working side by side
– One person develops the code tactically and the other one inspects it

methodically by keeping in mind the story they are implementing

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 19

JUnit – A Framework for Unit Testing

• JUnit: It is a framework for performing unit testing of Java programs.
– Other frameworks: NUnit (C#), CPPUnit (C++), fUnit (Fortran)

• Intuitive steps to test a method in Java (Ex. Move() method of
PlanetClass)

– Create an object instance of PlanetClass. Call it Mars.
– Select values of all input parameters of Move().
– Compute the expected value to be returned by Move(). Let it be y.
– Execute method Move() on Mars with the selected input values.

• Let Move() return a value called z.
– Compare the actual output (z) returned by Move() with the expected value (y).

• If (z == y), Move() passes the test; otherwise it fails. Report the
result.

• JUnit makes writing of test cases easier. Next slide …

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 20

JUnit – A Framework for Unit Testing

• JUnit provides a basic class called TestCase.
• The tester

– Extends the TestCase class for each test case. 10 extensions for 10 test cases.
– Alternatively, extend TestCase to have 10 methods for 10 test cases.

• The TestCase class provides methods to make assertions.
– assertTrue(Boolean condition)
– assertFalse(Boolean condition)
– assertEquals(Object expected, Object actual)
– assertEquals(int expected, int actual)
– assertEquals(double expected, double actual, double tolerance)
– assertSame(Object expected, Object actual)
– assertNull(Object testobject)
– …

• The tester can have her own assertions.

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 21

JUnit – A Framework for Unit Testing

• Each assertion accepts an optional first parameter of type String; if
the assertion fails, the string is displayed. Help for the tester…

• The assertEquals() method displays a message upon failure.
• junit.framework.AssertionFailedError: expected: <x> but was: <y>

• Note that only failed tests are reported.
• The following shows how assertTrue() works.

static public void assertTrue(Boolean condition) {
 if (!condition)
 throw new AssertionFailedError();
}

 Figure 3.5: The assertTrue() assertion throws an exception

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 22

JUnit – A Framework for Unit Testing
import TestMe; // TestMe is the class whose methods are going to be tested.
import junit.framework.*; // This contains the TestCase class.

public class MyTestSuite extends TestCase { // Create a subclass of TestCase

 public void MyTest1() { // This method is the first test case
 TestMe object1 = new TestMe(...); // Create an instance of TestMe with desired params
 int x = object1.Method1(...); // invoke Method1 on object1
 assertEquals(365, x); // 365 and x are expected and actual values, respectively.
 }

 public void MyTest2() { // This method is the second test case
 TestMe object2 = new TestMe(...); // Create another instance of
 // TestMe with desired parameters
 double y = object2.Method2(...); // invoke Method2 on object2
 assertEquals(2.99, y, 0.0001d); // 2.99 is the expected value;
 // y is the actual value;
 // 0.0001 is tolerance level
 }
}

Figure 3.5: An example test suite

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 23

Tools For Unit Testing

• Code auditor
– This tool is used to check the quality of the software to ensure that it meets

some minimum coding standard

• Bound checker
– This tool can check for accidental writes into the instruction areas of memory,

or to other memory location outside the data storage area of the application

• Documenters
– These tools read the source code and automatically generate descriptions and

caller/callee tree diagram or data model from the source code

• Interactive debuggers
– These tools assist software developers in implementing different debugging

techniques
Examples: Breakpoint and Omniscient debuggers

• In-circuit emulators
– It provides a high-speed Ethernet connection between a host debugger and a

target microprocessor, enabling developers to perform source-level debugging

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 24

Tools for Unit Testing
• Memory leak detectors

– These tools test the allocation of memory to an application which request for memory
and fail to de-allocate memory

• Static code (path) analyzer
– These tool identify paths to test based on the structure of code such as McCabe’s

cyclomatic complexity measure

Table 3.3: McCabe complexity
measure

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 25

Tools for Unit Testing

• Software inspection support
– Tools can help schedule group inspection

• Test coverage analyzer
– These tools measure internal test coverage, often expressed in terms of control

structure of the test object, and report the coverage metric

• Test data generator
– These tools assist programmers in selecting test data that cause program to

behave in a desired manner

• Test harness
– This class of tools support the execution of dynamic unit tests

• Performance monitors
– The timing characteristics of the software components be monitored and

evaluate by these tools

• Network analyzers
– These tools have the ability to analyze the traffic and identify problem areas

Software Testing and QA Theory and Practice (Chapter 3: Unit Testing) © Naik & Tripathy 26

Tools for Unit Testing

• Simulators and emulators
– These tools are used to replace the real software and hardware that are not

currently available. Both the kinds of tools are used for training, safety, and
economy purpose

• Traffic generators
– These produces streams of transactions or data packets.

• Version control
– A version control system provides functionalities to store a sequence of

revisions of the software and associated information files under development

	Software Testing and Quality Assurance�Theory and Practice�Chapter 3�Unit Testing
	Outline of the Chapter
	Concept of Unit Testing
	Static Unit Testing
	Static Unit Testing (Code Review)
	Static Unit Testing (Code Review)
	Static Unit Testing (Code Review)
	Static Unit Testing (Code Review)
	Defect Prevention
	Dynamic Unit Testing
	Dynamic Unit Testing
	Mutation Testing
	Mutation testing
	Mutation testing
	Mutation Testing
	Debugging
	Unit Testing in eXtreme Programming
	Unit Testing in eXtreme Programming
	JUnit – A Framework for Unit Testing
	JUnit – A Framework for Unit Testing
	JUnit – A Framework for Unit Testing
	JUnit – A Framework for Unit Testing
	Tools For Unit Testing
	Tools for Unit Testing
	Tools for Unit Testing
	Tools for Unit Testing

